### **Energy Condition Inheritance**

Heliudson Bernardo (McGill University)

in collaboration with S. Brahma, K. Dasgupta, M. Faruk, and R. Tatar

2107.06900, 2108.08365, 2207.xxxx (to appear)



21<sup>st</sup> String Phenomenology Conference

Liverpool, July 05 2022

Supergravity no-go theorems rely on typical assumptions: [1]

- Second derivative theory (E.H. action);
- Scalars + p-forms (no ghosts);
- $V \leq 0;$
- Time-independent internal space;
- $G_d$  is finite.

$$\Rightarrow R_d \le 0$$

#### Extended after inclusion of Dp-branes and Op-planes [2]

[1] J.M. Maldacena, C. Nunez 2001; G.W. Gibbons 2003; [2] K. Dasgupta, R. Gwyn, E. McDonough, M. Mia, R. Tatar 2014 These assumptions are sufficient for the validity of the strong energy conditions in d dimensions, [3]

 $SEC_D \Rightarrow SEC_d$ 

## In four-dimensions $w \ge -\frac{1}{3}$ and no accelerated solutions.

[3] G.W. Gibbons, 1985; J. G. Russo and P.K. Townsend 2018.

Relaxing the assumptions allows us to avoid the no-go theorem

Time-dependent internal manifolds:

- $SEC_d$  can be violated, but so is  $NEC_d$  [4]
- NEC<sub>4</sub> as a condition for controlled perturbative expansion of FLRW cosmologies in type IIB [5]

[4] J. G. Russo and P.K. Townsend 2019; [5] H.B., S. Brahma, K. Dasgupta, M.M. Faruk, R. Tatar 2021. What are the requirements for a D-dimensional energy condition to satisfy the lower, d-dimensional, conditions?

Energy conditions: tools for determining the global structure of a spacetime [6]

 $\overline{R}_{MN}u^M u^N \ge 0, \quad \overline{g}_{MN}u^M u^N < 0$ Strong (SEC) Null (NEC)  $\overline{R}_{MN}l^M l^N \ge 0, \quad \overline{q}_{MN}l^M l^N = 0$ Weak (WEC)  $\overline{G}_{MN}u^M u^N \ge 0, \quad \overline{g}_{MN}u^M u^N < 0$  $\overline{G}_{MN}u^{M}u^{N} \ge 0$ ,  $\overline{g}_{MN}u^{M}u^{N} < 0$ ,  $\overline{g}_{MN}\overline{G}^{M}_{\ \ P}\overline{G}^{N}_{\ \ Q}u^{P}u^{Q} \le 0$  Dominant (DEC) D-dimensional metric ansatz

$$d\overline{s}^{2} = \overline{g}_{MN} dx^{M} dx^{N}$$
$$= \Omega^{2}(y) \tilde{g}_{\alpha\beta}(x) dx^{\alpha} dx^{\beta} + h_{mn}(x, y) dy^{m} dy^{n}$$

- $\tilde{g}_{\alpha\beta}$  is a d-dimensional metric.
- $\tilde{h}_{mn}$  is the metric of a compact space.
- Constant internal volume:  $\partial_{\alpha}\sqrt{h} = 0$

The components of the Ricci tensor are

$$\begin{split} \overline{R}_{\alpha\beta} &= R_{\alpha\beta}(g) - \frac{1}{4} \nabla_{\alpha} h^{pq} \nabla_{\beta} h_{pq} - \frac{1}{2} h^{pq} \nabla_{\alpha} \nabla_{\beta} h_{pq} + \frac{1}{2} g^{\sigma\rho} \nabla_{m} g_{\beta\sigma} \nabla^{m} g_{\alpha\rho} - \\ &- \frac{1}{4} g^{\sigma\rho} \nabla_{m} g_{\beta\alpha} \nabla^{m} g_{\sigma\rho} - \frac{1}{2} h^{pq} \nabla_{p} \nabla_{q} g_{\alpha\beta} , \\ \overline{R}_{pq} &= R_{pq}(h) - \frac{1}{2} g^{\mu\rho} \nabla_{\mu} \nabla_{\rho} h_{pq} + \frac{1}{4} h_{ns} \nabla^{\rho} h_{pq} \nabla_{\rho} h^{sn} + \frac{1}{2} h^{nr} \nabla_{\rho} h_{qr} \nabla^{\rho} h_{pn} - \\ &- \frac{1}{4} \nabla_{p} g^{\mu\rho} \nabla_{q} g_{\mu\rho} - \frac{1}{2} g^{\mu\rho} \nabla_{p} \nabla_{q} g_{\mu\rho} , \\ \overline{R}_{p\beta} &= h_{m[s} \nabla_{p]} \nabla_{\beta} h^{sm} - g_{\rho[\beta} \nabla_{\mu]} \nabla_{p} g^{\mu\rho} + \frac{1}{2} h_{ps} \nabla^{\rho} h^{ns} \nabla_{n} g_{\rho\beta} - \frac{1}{4} h_{ps} \nabla_{\beta} h^{ns} g^{\mu\rho} \nabla_{n} g_{\rho\mu} - \\ &- \frac{1}{4} h_{ms} \nabla^{\sigma} h^{sm} \nabla_{p} g_{\rho\sigma} . \end{split}$$

### Strong energy condition (SEC)

$$\overline{R}_{MN}u^M u^N \ge 0, \quad \overline{g}_{MN}u^M u^N < 0$$

For the lower-dimensional theory:

$$R_{\alpha\beta}(\tilde{g})u^{\alpha}u^{\beta} + \frac{1}{4}\tilde{\nabla}_{\alpha}h^{pq}\tilde{\nabla}_{\beta}h_{pq}u^{\alpha}u^{\beta} + u^{2}\frac{\Omega^{-(d-2)}}{d}\nabla^{2}\Omega^{d} \ge 0$$

 $\Rightarrow \qquad \qquad R_{\alpha\beta}(\tilde{g})u^{\alpha}u^{\beta} \ge 0, \quad \tilde{g}_{\alpha\beta}u^{\alpha}u^{\beta} < 0$ 

#### Null energy condition (NEC)

$$\overline{R}_{MN}l^M l^N \ge 0, \quad \overline{g}_{MN}l^M l^N = 0$$

For the lower-dimensional theory:

$$R_{\alpha\beta}(\tilde{g})l^{\alpha}l^{\beta} \ge +\frac{1}{4}h^{mp}(l^{\alpha}\tilde{\nabla}_{\alpha}h_{mn})h^{nq}(l^{\beta}\tilde{\nabla}_{\beta}h_{pq}) \ge 0$$

#### Weak energy condition (WEC)

$$\overline{G}_{MN}u^M u^N \ge 0, \quad \overline{g}_{MN}u^M u^N < 0$$

For the lower-dimensional theory:

$$\tilde{G}_{\alpha\beta}u^{\alpha}u^{\beta} \geq T^{(h)}_{\alpha\beta}u^{\alpha}u^{\beta} + T^{(\Omega)}_{\alpha\beta}u^{\alpha}u^{\beta},$$

where

$$T_{\alpha\beta}^{(h)} := -\frac{1}{4} \tilde{\nabla}_{\alpha} h^{pq} \tilde{\nabla}_{\beta} h_{pq} + \frac{1}{8} \tilde{g}_{\alpha\beta} \tilde{\nabla}^{\sigma} h^{pq} \tilde{\nabla}_{\sigma} h_{pq}$$
$$T_{\alpha\beta}^{(\Omega)} := \left(\frac{1}{2} \Omega^2 R(h) - \frac{2(d-1)}{d} \Omega^{2-d/2} \nabla^2 \Omega^{d/2}\right) \tilde{g}_{\alpha\beta} = \Lambda(y) \tilde{g}_{\alpha\beta}$$

### Dominant energy condition (DEC)

$$\overline{G}_{MN}u^{M}u^{N} \geq 0, \quad \overline{g}_{MN}u^{M}u^{N} < 0, \quad \overline{g}_{MN}\overline{G}^{M}_{\ \ P}\overline{G}^{N}_{\ \ Q}u^{P}u^{Q} \leq 0$$

For this case, we need to show that

$$U_{\rho} := T_{\rho\beta}^{(h)} u^{\beta}, \quad W_{\rho} := T_{\rho\beta}^{(\Omega)} u^{\beta}$$

are causal vectors. But,

$$T^{(\Omega)}_{\rho\alpha}T^{(\Omega)\rho}{}_{\beta}u^{\alpha}u^{\beta} = \Lambda^2(y)\tilde{g}_{\rho\alpha}\delta^{\rho}_{\beta}u^{\alpha}u^{\beta} = \Lambda^2(y)u^2 \le 0$$

### Conclusions

- A constant internal volume is a sufficient condition for NEC and SEC inheritance;
- The tensor  $T_{\alpha\beta} = T_{\alpha\beta}^{(h)} + T_{\alpha\beta}^{(\Omega)}$  has to satisfy WEC for we to have WEC inheritance. The simplest possibility is for  $T^{(h)}$  and  $T^{(\Omega)}$  to satisfy WEC independently. In this case, we get WEC for the moduli fields  $h_{mn}$  and also a condition on the curvature of the internal manifold;
- Since  $T^{(\Omega)}$  is necessarily causal, the only extra condition on top of WEC for the lowerdimensional DEC to descend from the higher-dimensional one is that  $T^{(h)}$  should satisfy DEC.

#### Thank you for your attention!

Recently, an attempt on finding dS backgrounds in type IIB supported by all sorts of corrections was carried out by studying the metric uplift to M-theory.<sup>35</sup>

The type IIB metric ansatz is

$$ds^{2} = \frac{1}{\Lambda H^{2}(y)t^{2}} \left( -dt^{2} + dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} \right) + H^{2}(y) \left( F_{1}(t)g_{\alpha\beta}(y)dy^{\alpha}dy^{\beta} + F_{2}(t)g_{mn}dy^{m}dy^{n} \right)$$

where  $(m, n) \in M_4$  and  $(\alpha, \beta) \in M_2$ . We also impose  $F_1F_2^2 = 1$ 

35 K. Dasgupta, M. Emelin, M.M. Faruk, R. Tatar 2019; S. Brahma, K. Dasgupta, R. Tatar 2020/2021; H.B., S. Brahma, K. Dasgupta, M.M. Faruk, R. Tatar 2021.

This background can be uplifted to M-theory with metric

$$ds^{2} = g_{s}^{-8/3} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{s}^{-2/3} \mathcal{H}^{2}(y) \left( F_{1}(t) g_{\alpha\beta}(y) dy^{\alpha} dy^{\beta} + F_{2}(t) g_{mn} dy^{m} dy^{n} \right) + g_{s}^{4/3} |dz|^{2}$$

where  $g_s^2 \propto \Lambda t^2 H^2(y)$  and  $z = x_3 + i x_{11}$  is the coordinate of the torus.

It turns out that we need time-dependent fluxes to support this M-theory background

However, there are no-go theorems preventing such a background to be solution to the supergravity plus fluxes and sources<sup>36</sup>

We need to consider curvature corrections contributions to Einstein's equations:

$$\mathbf{R}_{MN} - rac{1}{2}g_{MN}\mathbf{R} = \mathbb{T}_{MN}^{ ext{classical}} + \mathbb{T}_{MN}^{ ext{corrections}}$$

What should we include in the energy-momentum tensor of the corrections? The main idea is to study all possible imageable terms!

#### There could be an infinite number of curvature corrections. Schematically, we write a term like

$$\begin{aligned} \mathbb{Q}_{\mathrm{T}}^{(\{l_i\},n_i)} &= \mathbf{g}^{m_im'_i}....\mathbf{g}^{j_kj'_k} \{\partial_m^{n_1}\} \{\partial_\alpha^{n_2}\} \{\partial_a^{n_3}\} \{\partial_0^{n_0}\} \left(\mathbf{R}_{mnpq}\right)^{l_1} \left(\mathbf{R}_{abab}\right)^{l_2} \left(\mathbf{R}_{pqab}\right)^{l_3} \left(\mathbf{R}_{\alpha ab\beta}\right)^{l_4} \\ &\times \left(\mathbf{R}_{\alpha\beta mn}\right)^{l_5} \left(\mathbf{R}_{\alpha\beta\alpha\beta}\right)^{l_6} \left(\mathbf{R}_{ijij}\right)^{l_7} \left(\mathbf{R}_{ijmn}\right)^{l_8} \left(\mathbf{R}_{iajb}\right)^{l_9} \left(\mathbf{R}_{i\alpha j\beta}\right)^{l_{10}} \left(\mathbf{R}_{0mnp}\right)^{l_{11}} \\ &\times \left(\mathbf{R}_{0m0n}\right)^{l_{12}} \left(\mathbf{R}_{0i0j}\right)^{l_{13}} \left(\mathbf{R}_{0a0b}\right)^{l_{14}} \left(\mathbf{R}_{0\alpha0\beta}\right)^{l_{15}} \left(\mathbf{R}_{0\alpha\beta m}\right)^{l_{16}} \left(\mathbf{R}_{0abm}\right)^{l_{17}} \left(\mathbf{R}_{0ijm}\right)^{l_{18}} \\ &\times \left(\mathbf{R}_{mnp\alpha}\right)^{l_{19}} \left(\mathbf{R}_{m\alpha ab}\right)^{l_{20}} \left(\mathbf{R}_{m\alpha\alpha\beta}\right)^{l_{21}} \left(\mathbf{R}_{m\alpha ij}\right)^{l_{22}} \left(\mathbf{R}_{0mn\alpha}\right)^{l_{23}} \left(\mathbf{R}_{0m0\alpha}\right)^{l_{24}} \left(\mathbf{R}_{0\alpha\beta\alpha}\right)^{l_{25}} \\ &\times \left(\mathbf{R}_{0ab\alpha}\right)^{l_{26}} \left(\mathbf{R}_{0ij\alpha}\right)^{l_{27}} \left(\mathbf{G}_{mnpq}\right)^{l_{28}} \left(\mathbf{G}_{mnp\alpha}\right)^{l_{29}} \left(\mathbf{G}_{mnpa}\right)^{l_{30}} \left(\mathbf{G}_{mn\alpha\beta}\right)^{l_{31}} \left(\mathbf{G}_{mn\alphaa}\right)^{l_{32}} \\ &\times \left(\mathbf{G}_{m\alpha\beta a}\right)^{l_{33}} \left(\mathbf{G}_{0ijm}\right)^{l_{34}} \left(\mathbf{G}_{0ij\alpha}\right)^{l_{35}} \left(\mathbf{G}_{mnab}\right)^{l_{36}} \left(\mathbf{G}_{ab\alpha\beta}\right)^{l_{37}} \left(\mathbf{G}_{m\alphaab}\right)^{l_{38}} \end{aligned}$$

and then sum over  $(l_i, n_i)$ .

$$\mathbf{S}_1 = \mathbf{M}_p^9 \int d^{11}x \sqrt{-\mathbf{g}_{11}} \Big( \mathbf{R}_{11} + \mathbf{G}_4 \wedge \mathbf{*}\mathbf{G}_4 + \mathbf{C}_3 \wedge \mathbf{G}_4 \wedge \mathbf{G}_4 + \mathbf{M}_p^2 \ \mathbf{C}_3 \wedge \mathbb{Y}_8 \Big)$$

# Since $\frac{g_s}{H(y)} \propto t$ , we can rewrite time-dependence of all fields as $g_s$ dependence.

The ansatz for the fluxes is then expressed as

$$\mathbf{G}_{MNPQ}(g_s, y) = \sum_k \mathcal{G}_{MNPQ}^{(k)}(y) \left(\frac{g_s}{\mathbf{H}}\right)^{2k/3}$$

We wish to solve Einstein's equation order by order in  $g_s$ . So, although we don't know the coefficients of the corrections, we can check whether our ansatz allow for a match of  $g_s$  scalings.

## The energy-momentum tensor of the perturbative corrections scales as $g_s^{\theta_{kl}}$ , where

$$\begin{array}{rcl} \theta_{kl} &\equiv& \displaystyle \frac{2}{3}\sum_{i=1}^{27}l_i + \frac{1}{3}\left(\sum_{i=0}^2n_i - 2n_3 + l_{34} + l_{35}\right) + \frac{2}{3}\left(k+2\right)\left(l_{28} + l_{29} + l_{31}\right) \\ &+& \displaystyle \frac{1}{3}\left(2k+1\right)\left(l_{30} + l_{32} + l_{33}\right) + \frac{2}{3}\left(k-1\right)\left(l_{36} + l_{37} + l_{38}\right) \end{array}$$

Note that there are relative minus signs in the  $n_3$  term (which is the number of derivatives w.r.t to the 11<sup>th</sup> direction) and in front of  $l_{36}$ ,  $l_{37}$ ,  $l_{38}$  (which are powers of fluxes with the structure  $G_{MNab}$ ).

If we take time-independent fluxes, k = 0, then there are negative definite terms in the  $g_s$  scaling:

$$\theta_{kl} = \text{positive} - \frac{2}{3}(n_3 + l_{36} + l_{37} + l_{38})$$

This means that, to a given order in  $g_s$ , there are an infinite number of higher-order terms that contributes to that order.

Hence, there is no  $g_s$  hierarchy and so no-perturbative solutions! The only possible solutions are non-perturbative ones, and they only exist if the infinite number of corrections can be resumed.

However, turning on time-dependent fluxes makes the hierarchy possible again, and there is not obstructions against a perturbative solution.